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Reduced-Rank MDL Method for Source Enumeration
in High-Resolution Array Processing
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Abstract—This paper proposes a reduced-rank minimum de-
scription length (MDL) method to enumerate the incident waves
impinging on a uniform linear array (ULA). First, a new observa-
tion data and a reference signal are formed from sensor data by
means of the shift-invariance property of the ULA. A cross-cor-
relation between them is calculated, which is able to capture
signal information and efficiently suppress additive noise. Second,
the normalized cross-correlation is used as initial information
for a recursion procedure to quickly partition the observation
data into two orthogonal components in a signal subspace and
a reduced-rank noise subspace. The components in the noise
subspace are employed to calculate the total code length that is
required to encode the observation data. Finally, the model with
the shortest code length, namely the minimum description length,
is chosen as the best model. Unlike the traditional MDL methods,
this method partitions the observation data into the cleaner
signal and noise subspace components by means of the recursion
procedure, avoiding the estimation of a covariance matrix and
its eigendecomposition. Thus, the method has the advantage of
computational simplicity. Its performance is demonstrated via
numerical results.

Index Terms—Direction-of-arrival (DOA), eigenvalue decom-
position (EVD), high resolution, minimum description length
(MDL), multistage Wiener filter (MSWF), reduced rank, sensor
array signal processing, signal enumeration, Wiener filter.

I. INTRODUCTION

HIGH-SPEED data transmission and real-time multimedia
service techniques are developing toward the fourth gen-

eration wireless communication system. As a key part of the
techniques, adaptive array signal processing has received con-
siderable attention. However, many high-resolution algorithms
for parameter estimation used in the modern array signal pro-
cessing depend on prior knowledge of the number of incident
signals. As a result, the ability to accurately enumerate the inci-
dent signals with low computational complexity becomes more
crucial.

In the community of array signal processing, the problem
of source enumeration has been investigated extensively in
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[1]–[15]. In [1], Wax and Kailath proposed to apply the Akaike
information criterion (AIC) [16] and minimum description
length (MDL) [17] to source enumeration. The number of sig-
nals in the AIC and MDL criteria is determined by minimizing
the Kullback-Leibler distance between the hypothesized model
and the observation data. Wax and Kailath showed that the
MDL criterion yields a consistent estimate of the number of
signals while the AIC scheme yields an inconsistent estimate
that tends, asymptotically, to overestimate the number of
signals. The behavior of the information theoretic criteria for
source enumeration has been well investigated by Zhang et al.
[3] and Liavas et al. [4].

To enumerate the incident signals in a correlated signal en-
vironment, Di [5] and others, such as Shan et al. [6], Cozzens
et al. [7], Xu et al. [8], and Ma et al. [9], employ the spatial
smoothing technique [18], [19] to decorrelate the coherency of
signals. Unlike these methods, Wax and Ziskind [2] have devel-
oped an MDL approach for coherent signal enumeration based
on a multidimensional search. This approach first partitions the
sensor data into signal and noise subspace components, and then
separately calculates their MDL descriptors. Finally, the MDL
descriptors are added up to attain the total description length for
the sensor data. Nevertheless, while the MDL method [2] can
attain an efficient estimate of the number of signals, it is rather
computationally intensive since it resorts to the maximum likeli-
hood (ML) estimates of the directions-of-arrival (DOAs) of inci-
dent signals, which are obtained by solving a multidimensional
nonlinear minimization problem. Recently, Valaee and Kabal
[10] developed a method for source enumeration based on pre-
dictive description length (PDL). Similar to the MDL method
[2], Valaee and Kabal employed the ML estimates of the DOAs
to partition the sample-covariance matrix into two orthogonal
components in the signal and noise subspaces. Each component
is then encoded and the results are added up to obtain the total
code length. The model with the smallest code length is selected
as the best model. However, while the PDL algorithm is more
accurate than the MDL approach [2], it is also rather compu-
tationally expensive since it essentially involves the ML esti-
mates of the DOAs. To reduce the computational load of the
PDL method, an alternating projection (AP) method [20] may
be employed to decompose the multidimensional ML estimator
into several 1-D nonlinear minimization problems. Neverthe-
less, the PDL algorithm is still computationally cumbersome
since it requires the ML estimates of the DOAs for every time
instant.

Ishikawa et al. [12] presented a method for source enumer-
ation that is more accurate than the traditional MDL method
[1], and only depends on the estimate of the covariance matrix
and its eigenvalue decomposition (EVD), requiring the compu-
tational complexity of flops, where and
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represent the number of sensors of the array and the number
of snapshots, respectively. Unfortunately, the procedure of esti-
mating the covariance matrix and computing the eigenvalues is
still computationally intensive and time consuming, which indi-
cates that the EVD-based methods for source enumeration are
unsuitable for some practical situations when the number of sen-
sors is large and/or the number of signals requires to be tracked
in an online manner. Moreover, the EVD-based methods may
hardly detect the number of signals in some severe environments
such as low signal-to-noise ratio (SNR) and/or small sample size
where the covariance matrix cannot be calculated accurately.

All the algorithms reviewed previously require the estimated
covariance matrix and its eigenvalues. Moreover, the MDL ap-
proach [2] and the PDL method [10] still rely on the ML esti-
mates of the DOAs, besides the eigenvalues of the estimated co-
variance matrix. Wu and Fuhrmann [13] developed an approach
for source enumeration that does not resort to the eigenvalues
of the estimated covariance matrix. However, as noted in [13],
this method is more computationally intensive than the common
EVD-based methods since it relies on the ML solution to the di-
rection finding problem for each of several hypotheses. While
the MDL method [14] is more computationally efficient than the
EVD-based methods and outperforms the methods for source
enumeration [2], [12] in performance, it requires the knowl-
edge of the training data of the desired signal. To date, there are
no more successful efforts to develop low computational com-
plexity methods for source enumeration in the literature.

To accurately detect the number of signals with a reduced
computational burden, this paper proposes a reduced-rank MDL
method, based on the multistage Wiener filter (MSWF) [21],
[22]. The proposed method proceeds in three steps. First, a new
observation data and a reference signal are attained from the
sensor data by means of the shift-invariance property of a uni-
form linear array (ULA). A cross-correlation between them is
calculated, which is capable of capturing signal information and
efficiently eliminating additive noise. The normalized cross-cor-
relation is then used to quickly partition the observation data
into two orthogonal components in the signal subspace
and the reduced-rank noise subspace, where
and are the assumed number of signals and the dimension
of the reduced-rank observation space. Meanwhile, the signal
and noise subspace components are employed to determine the
parameter . Second, the variances of the noise subspace com-
ponents instead of the eigenvalues associated with the estimated
covariance matrix are used to calculate the total code length that
is required to encode the sensor data. Therefore, the estimate of
the covariance matrix and its EVD can be avoided. Finally, the
number of signals is determined by minimizing the description
length of the sensor data.

The remainder of this paper is organized as follows. The data
model and basic assumptions are given in the next section. The
reduced-rank MDL method for source enumeration is proposed
in Section III. Meanwhile, its consistency is proven. Numer-
ical results are presented in Section IV. Finally, conclusions are
drawn in Section V.

II. DATA MODEL AND BASIC ASSUMPTIONS

Consider a ULA composed of isotropic sensors.
Impinging upon the array are narrow-band sig-
nals from distinct directions

. The narrow-band signal sources, centered
around a known frequency , are placed in the far field, and
thereby the wavefronts can be approximated as planar. For
simplicity, we also assume that the sources and the sensors
are in the same plane. Thus, employing complex envelope
representation, the received vector of the array can be
expressed as

(1)
where is the additive noise, is the “steering vector”
of the array toward direction , represents the unknown
number of incident signals, denotes transpose, and

is the received noisy signal at the th sensor in which
is the propagation delay

between the first sensor (the reference point) and the th
sensor to a wavefront impinging from direction , denotes
the propagation speed, and is the distance between two
adjacent sensors.

In matrix notation, (1) can be rewritten more compactly as

(2)

where

(3)

is the array response matrix with

Suppose that the received vector is sampled at time in-
stants: .

Throughout this paper, we make the following basic assump-
tions on the sensor data model.

A1) The array response matrix is unambiguous, namely
the array response vectors are
linearly independent for any set of distinct incident an-
gles , which indicates that the matrix

is of full rank.
A2) The signals are jointly stationary, zero-mean

complex Gaussian random processes, which are uncor-
related with each other.

A3) The background noises are independent and
identity distributed complex, zero-mean, Gaussian
vectors with covariance matrix , where repre-
sents the identity matrix. In addition, the noises

are uncorrelated with the signals .
A4) The number of sensors is greater than the number of

signals, and satisfies the inequality .
Under these assumptions, the output of the array is a complex

Gaussian random process with zero mean and the following co-
variance matrix:

(4)

where denotes expectation, denotes Hermition trans-
pose, and denotes the signal covariance ma-
trix, which is nonsingular and diagonal. The subspace spanned
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Fig. 1. MSWF.

by the columns of is called signal subspace, and its orthog-
onal complement is called noise subspace. In practical applica-
tions, however, we do not have access to the ideal covariance
matrix. Instead, we, in general, only obtain its sample-covari-
ance matrix , where is finite.

III. REDUCED-RANK MDL METHOD FOR

SOURCE ENUMERATION

A. Subspace Decomposition Without Eigendecomposition

In this subsection, we will present a subspace decomposition
method without eigendecomposition or any priori knowledge
of signal sources. To begin with, we define a new observation
data from (1) as . Using the
shift-invariance property of the ULA, we can write more
compactly as

(5)

where , con-
sists of the first rows of with , and

. To calculate the signal subspace by
a successive refinement procedure, we also define a reference
signal by

(6)

where . In the sequel, we can calculate the
cross-correlation between the new observation data and the ref-
erence signal, namely the initial information for the refinement
procedure

(7)

where is the complex conjugate, and

. Considering is a nonsin-
gular matrix yields

(8)

Therefore, the cross-correlation is a linear combination
of all the direction vectors . This implies
that the cross-correlation is able to capture the signal in-
formation. Meanwhile, it is shown in (7) that the additive noise
has been efficiently eliminated in the calculation of . In

the sequel, we use the cross-correlation to define the following
matched filter:

(9)

where denotes the vector norm. Partitioning the new sensor
data with the matched filter in a manner similar to
that of the multistage Wiener filter (MSWF) [21], we attain the
desired signal and its orthogonal component at the
th stage by

(10)

and

(11)

where is the blocking matrix and is the
matched filter updated as

(12)

Fig. 1 shows a block diagram of a three-stage MSWF, where
, , and are the estimation errors and , , and

are the scalar weights. The desired signal is obtained
by prefiltering the observation data with the matched
filters , but annihilated by the blocking matrix . The ob-
servation data is partitioned stage-by-stage in the same refine-
ment manner. As a result, we obtain the prefiltering matrix

and the desired signals of the MSWF
by successive recursions.

Lemma 1: The first matched filters span
the same range subspace of while the last matched
filters span the null subspace of , namely

(13)

(14)

where and represent the signal subspace of rank
and the noise subspace of rank , respectively, and

are the orthonormal matched filters of the MSWF.
Proof: The proof is seen in Appendix I.

Lemma 1 indicates that the signal and noise subspaces can be
calculated by the refinement procedure. Meanwhile, note that
the cross-correlation is able to capture the signal informa-
tion and efficiently suppress the additive noise. In the sequel,
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when is employed as the initial information for the re-
finement procedure, the signal and noise subspaces can be ob-
tained more accurately by the refinement procedure than by the
EVD-based methods, especially for the case of low SNR and/or
small sample size. With Lemma 1, we can show that the propo-
sition below is true.

Proposition 1: The last desired signals of the MSWF
are uncorrelated with each other and their variances equal the
noise variance, namely

(15)

(16)

Proof: The proof of Proposition 1 is seen in Appendix II.

Notice that the first desired signals of the MSWF do not sat-
isfy (15) and (16). Consequently, given the and , we can
very easily determine the number of signals from Proposition 1.
In a practice situation, however, the and are unknown,
and thereby the number of signals cannot be obtained from (15)
and (16) any more. In the following subsections, we will pro-
pose a reduced-rank MDL method for source enumeration.

B. Novel MDL Criterion for Source Enumeration

According to the MDL principal, for a given data set and a
family of probabilistic models, one should select the model that
yields the shortest description length of the data. The description
length of the data can be evaluated quantitatively. In general,
given an observation data set and a proba-
bilistic model , where denotes an unknown parameter
vector, the shortest code length required to encode the data using
the model can be asymptotically written as [2]

(17a)

where is the maximum likelihood estimate of and denotes
the number of free parameters in the vector . If the observation
data are assumed to be statistically independent com-
plex Gaussian random vectors with mean , their joint prob-
ability density is given by

(17b)

where is the determinant, is the covariance matrix of
and is composed of and . Taking the logarithm,

omitting terms independent of and substituting the result into
(17a) yields the description length of the observation data

(17c)

where denotes the trace operation and
.

From (13) and (14) it follows that
and span the signal and noise sub-
spaces, respectively. Here, is the assumed number of signals.

Partitioning the observation data into the components of
the signal and noise subspaces yields

(18)

In the sequel, the components in the signal and noise subspaces
can be calculated as

(19)

(20)

Since the prefiltering matrix is a unity matrix, it follows
from (18) that the total code length required to encode the ob-
servation data is equivalent to encoding the signal sub-
space components and the noise subspace compo-
nents , respectively.

Substituting (5) into (20) yields

(21)
Since the additive noise is a complex Gaussian random
vector with zero mean and covariance matrix , it is straight-
forward to mode as a complex Gaussian
random vector with zero mean and covariance matrix ,
namely

(22)

Note that the probability mode of has only a single pa-
rameter . In the sequel, substituting the ML estimate of ,
namely , and (22) into (17), we obtain the
code length required to encode the noise subspace components

(23)

where .
Given the noise subspace components , the condi-

tional distribution of the signal subspace components
may be modelled as

(24)

where and are unknown complex matrices of dimensions
and , respectively. Note that the number of

free parameters in the matrices and are and ,
respectively, and the ML estimates of the matrices and are
given by

(25)

(26)

where and
. Substituting (24)–(26) into

(17a)–(17c), and performing some straightforward algebraic
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manipulations, we can obtain the code length encoding the
signal subspace components

(27)
Therefore, combining (23) and (27) and omitting the term in
(23) that is independent of , we obtain the total code length
required to encode the observation data given by

(28)

More details about the derivation of (28) may be found in [2].
It is indicated in Proposition 1 that the desired signals of the

MSWF after the th stage are un-
correlated with each other, namely

. As a result, is a diagonal matrix

(29)

Thus, substituting the ML estimate of into (28), we even-
tually obtain a new MDL estimator for the number of signals

(30)

where

(31)

in which is the ML estimate of
. Note that the recursion procedure can directly generate the

estimated variances of the desired signals
while attaining the estimated signal and noise subspaces.

C. Reduced-Rank MDL Criterion for Source Enumeration

Since the desired signals of the MSWF after the th stage
have the same power as the background noise, as noted in Propo-
sition 1, reduced-rank noise subspace components may lead to
the sufficient accuracy of source enumeration. The reduced-rank
noise subspace components can be expressed as

(32)
where is the dimension of the reduced-rank
observation space. Consequently, the covariance matrix of the
reduced-rank noise subspace components is calculated as

(33)

Substituting the ML estimate of into (28) and noticing
that the reduced-rank observation space is of dimension , we
obtain the total code length required to encode the reduced-rank
observation space

(34)

where is the ML esti-

mate of the reduced-rank covariance matrix . Thus, the
reduced-rank MDL estimator for the number of signals can be
eventually written as

(35)

where

(36)

Remark A: Unlike the MDL approach proposed by Wax and
Ziskind [2], the reduced-rank MDL method does not rely on
the ML estimates of the DOAs or the explicit formation of pro-
jection matrices on the signal and noise subspaces to find the
noise subspace components, but rather directly generates a set
of desired signals forming the signal and noise subspace com-
ponents by means of a successive refinement procedure. On the
other hand, the reduced-rank MDL method directly employs the
variances of the desired signals instead of the eigenvalues asso-
ciated with the estimated covariance matrix to evaluate the code
length of the sensor data, which is different from that of the tra-
ditional MDL methods [1], [2]. As a result, the reduced-rank
MDL method is more computationally efficient than the tradi-
tional MDL approaches. Meanwhile, note that the cross-correla-
tion between the observation data and the reference signal is able
to capture the signal information and efficiently eliminate the
additive noise. Since the cross-correlation is used as the initial
information for the refinement procedure to partition the sensor
data into the signal and noise subspace components, the signal
subspace components are capable of capturing the signal infor-
mation while excluding a large portion of noise. On the contrary,
their orthogonal components are able to retain the power of the
noise while significantly mitigating the signal subspace compo-
nents, and are thereby the cleaner noise subspace components.
This eventually leads to the enhanced detection performance of
the reduced-rank MDL approach, especially in some severe en-
vironments such as small sample size and/or low SNR.
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Remark B: From (10)–(12), we can see that the domi-
nant computational cost among them is the calculation of
the matched filter, which requires complex multiplications
and additions for each snapshot, equivalently approx-
imately floating point operations (or flops), and thereby
around flops for each recursion.
Meanwhile, note that the variances of the desired signals can
be directly generated by the recursion procedure, and their
computational cost is less than that of the calculation of the
matched filters. Consequently, the proposed method only needs
around flops to determine the number of
signals. However, the classical information theoretic methods
for source enumeration, such as the AIC and MDL methods
[1], involve the estimate of the covariance matrix and its EVD,
therefore requiring flops that are quite
heavy for a large array. Moreover, the MDL algorithm [2] and
the PDL approach [10] essentially involve the ML estimates of
the DOAs, the estimated covariance matrix and its eigenvalues,
which imply that much more computational cost is required in
these methods than in the conventional EVD-based methods
[1]. Thus, the reduced-rank MDL estimator outperforms the
traditional EVD-based methods and the multidimensional
search-based methods [2], [10] in computational complexity, in
particular for a large array.

D. Rank Adaptation

It is easy to see from (35) and (36) that if , we cannot
correctly detect the number of signals. If , how-
ever, the reduced-rank MDL method might not be computa-
tionally attractive. The desired should be a little greater than
the true number of signals. It is stated in Proposition 1 that the
cross-correlations between the last desired signals of the
MSWF equal zero. Meanwhile, note that the absolute values of
the cross-correlations between the first adjacent desired sig-
nals are in general greater than one. This implies that we can de-
termine by using the cross-correlations between the adjacent
desired signals of the MSWF. In practical applications, however,
the cross-correlations between the adjacent desired signals after
the th stage do not equal but are close to zero due to finite sam-
ples. To this end, we defined a detector of as

(37)

where , denotes the absolute
value of a complex number , and is a small positive constant.

Remark C: Note that are generally
greater than one while are small
numbers approaching to zero. Consequently, the performance
of the reduced-rank MDL method may be insensitive to the
selection of over a reasonable large range, as will also be
indicated by simulation results in Section IV.

E. Consistency of the Reduced-Rank MDL Criterion

In this subsection, we prove the strong consistency of the re-
duced-rank MDL criterion. The consistency proof requires the
following preliminary results.

Lemma 2: For the sample-covariance matrix , the fol-
lowing relation holds with probability one (w. p. 1):

(38)

Proof: The proof of Lemma 2 may be found in [2], [23].

From Lemma 2, we get

(39)

It follows from (16) and (39) that:

(40)
Since the variances of the first desired signals of the MSWF
are the powers of signals while the variances of the desired sig-
nals of the MSWF after the th stage are equal to the noise vari-
ance, are not all identity w.
p. 1 as the number of snapshots tends to infinity. With these re-
sults, we are able to prove that the reduced-rank MDL criterion
is strong consistent. That is, as the number of snapshots tends
to infinity, the total code length is minimized at w. p. 1.
The proof is seen in Appendix III.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed MDL esti-
mator is evaluated by computer simulation. For fair compar-
ison, the results of the traditional MDL method developed by
Wax and Ziskind [2] and the PDL approach proposed by Valaee
and Kabal [10] are also given. The array herein is assumed
to be a ULA with ten isotropic sensors whose spacings equal
half-wavelength. Suppose that there are two uncorrelated sig-
nals with equal power impinging upon the ULA from the di-
rections . The background noise is assumed to be a sta-
tionary Gaussian random process that is uncorrelated with the
signals. The number of snapshots is 100. The SNR is defined as
the ratio of the power of signals to the power of noise at each
sensor.

To illustrate that the proposed reduced-rank MDL estimator
can obtain its full-rank detection performance, we have run 100
independent trials to calculate the probability of detection for
the proposed MDL method with different ranks: , ,

, adaptive determined by (37) and , namely
the full-rank case. The results are given in Fig. 2. Note that the
number of signals is two and thereby the reduced-rank MDL
estimator with cannot calculate the noise subspace com-
ponents. As a result, the reduced-rank MDL method fails to enu-
merate the signals for . If the rank is greater than 2, the
reduced-rank MDL estimator can correctly detect the number of
signals. It can also be observed from Fig. 2 that the reduced-rank
MDL estimator is insensitive to the choice of over a quite
large range from 0.005 to 0.5 as SNR is reasonably high, say

2.5 dB. Note that when becomes small, in-
creases. Consequently, more desired signals of the MSWF after
the th stage are involved, which lead to the fact that the vari-
ances of the noise subspace components are not clustered suffi-
ciently closely especially for the case of low SNR, and thereby
reducing the likelihood of correctly detecting the number of sig-
nals [4]. Meanwhile, the computational cost of the reduced-rank
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Fig. 2. Probability of detection of the proposed method for different ranks
versus SNR. The number of sensors is 10 and N = 100. SNR varies from
�10 to 10 dB.

TABLE I
NUMBER OF SIGNALS DETECTED BY THE MDL (W & Z),
THE PROPOSED MDL WITH ADAPTIVE D, AND THE PDL

(V & K) METHODS FOR 100 INDEPENDENT RUNS

MDL method will increase as grows. As a result, should be
a small constant close to 0.5.

One hundred independent trials have been run to find the
number of times that the proposed reduced-rank MDL, the MDL
(W & Z) [2] and the PDL (V & K) methods enumerate the sig-
nals. Table I shows the estimated number of signals. As shown
in Table I, the proposed reduced-rank MDL method surpasses
the traditional MDL approach, but is less accurate than the PDL
method when 5 dB. On the other hand, it should
be noted that the PDL method requires the ML estimates of the
DOAs for each snapshot, and is thereby much more computa-
tionally cumbersome than the MDL method (W & Z) that also
involves the ML estimates of the DOAs and the EVD of the esti-
mated covariance matrix. Thus, the reduced-rank MDL method
outperforms the traditional MDL method and the PDL method
in computational complexity.

Since the cross-correlation between the observation data and
the reference signal is able to capture the signal information
and efficiently eliminate the additive noise, when it is used as
the initial information for the refinement procedure to find the
signal and noise subspaces, the cleaner signal and noise sub-
space components can be obtained. As a result, the estimated

variances of the first two desired signals , namely
the powers of signals, are well separated from the estimated
variances of the desired signals after the second stage

, namely the powers of noises. Meanwhile, the vari-
ances of the noise subspace components (the desired signals
after the second stage) are clustered sufficiently closely. Conse-
quently, the proposed method is able to significantly reduce the
likelihood of overestimating and underestimating the number
of signals, eventually leading to the enhanced detection perfor-
mance. Thus, the proposed MDL method is more accurate than
the traditional MDL approaches [1], [2].

V. CONCLUSION

In this paper, we have proposed a reduced-rank MDL method
for source enumeration in high-resolution array processing.
The proposed method linearly partitions the sensor data into
the signal and noise subspace components by means of the
recursion procedure. The variances of the noise subspace com-
ponents instead of the eigenvalues are exploited to calculate
the total code length required to encode the observation data.
Therefore, the proposed method does not involve the estimate
of the covariance matrix or any eigendecomposition, giving it
the advantage of computational simplicity. Meanwhile, notice
that the cross-correlation between the observation data and the
reference signal is able to capture the signal information and
efficiently eliminate the additive noise. Since the cross-cor-
relation is used as the initial information for the recursion
procedure to find the signal and noise subspace components,
the first desired signals of the MSWF (the signal subspace
components) are capable of capturing the signal information
while suppressing a large portion of noise. On the other hand,
their orthogonal components (the desired signals of the MSWF
after the th stage) become cleaner random noise. This in-
dicates that the variances of the signal subspace components
are well separated from the variances of the noise subspace
components and the variances of the noise subspace com-
ponents are clustered sufficiently closely. Consequently, the
proposed method significantly reduces the likelihood of over-
estimating and underestimating the number of signals, thereby
significantly improving the detection performance. Thus, the
proposed MDL method surpasses the traditional MDL methods
in detection performance and computational complexity, but is
less accurate than the PDL method when SNR becomes low.
The disadvantage of the proposed method can be balanced by
the advantage of computational simplicity.

APPENDIX I
PROOF OF LEMMA 1

Since the signal covariance matrix is nonsingular, the
EVD of the covariance matrix can be expressed

(41)

where , ,
,
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1 are the eigenvalues and
are the corresponding eigenvectors. Substituting

into (41), and performing some
algebraic manipulations yields

(42)

where is a full-rank matrix.
It is shown in [22] that the matched filters

are orthogonal to each other. Actually, it follows from [21] and
[22] that

(43)

where

(44)

To prove the orthogonality of , we employ
the following induction argument. First, it is easy to verify from
(43) that is orthogonal to . Assume, now, that is orthog-
onal to for , , . Substituting (44) into (43) yields

(45)

It can then be obtained from (45) that is orthog-
onal to , namely is orthogonal
to for , , . Therefore,

are orthogonal to each other. In the sequel,
it follows from [22] that the MSWF of rank is com-
pletely equivalent to solving the Wiener–Hopf equation

in the Krylov subspace
. Here rep-

resents a linear filter. Consequently, the columns of
form an orthogonal basis for the

Krylov subspace, namely

(46)

Employing the shift-invariance property of the Krylov subspace
[24], we obtain

(47)

1Note that the largest eigenvalues are equal to each other provided that the
incident signals have equal powers and their direction vectors are orthogonal
to each other. However, this case takes place only when the angles-of-arrival
(AOAs) of incident signals are not all in the beamwidth of the array. Since the
work is focused on the high-resolution DOA estimations of signals, we are only
interested in the AOAs of incident signals within the beamwidth of the array.
Therefore, we do not consider the case of � = � (i; j = 1; 2; . . . ; p; i 6= j).

where is the covariance matrix of
noiseless sensor data. It follows that

(48)

Therefore, there exists a full-rank matrix such that

(49)

Since

(50)

where with
, by substituting (50) into (49) and

noticing that and , we obtain

(51)

where

(52)

. . .

...
...

. . .
...

(53)

Since is a nonsingular and diagonal matrix
. It follows that the diag-

onal matrix is full rank. Meanwhile, is a Vandermonde
matrix due to . It follows
that is also full rank. In the sequel, from (52) we can obtain
that is a full-rank matrix. Thus, the columns of span the
same range subspace of , namely the signal subspace.
Since all the matched filters are orthogonal



5666 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 12, DECEMBER 2007

to each other, the columns of span
the noise subspace. This completes the proof of Lemma 1.

APPENDIX II
PROOF OF PROPOSITION 1

It follows from (11) that .
Noticing that , we obtain

(54)

From (14), it follows that .
Thus, considering , we obtain from (54)

(55)

(56)

This proves Proposition 1.

APPENDIX III
PROOF OF THE CONSISTENCY OF THE

REDUCED-RANK MDL CRITERION

It follows from (36) that

(57)

where

(58)

It is easy to obtain from (58) that for

a.s. as

(59)

Here, we use the standard abbreviation “a.s.” for “almost sure”
to describe an event occurring with probability one.

We first consider the case . Since
are not all equal with probability one when tends

to infinity, we obtain by the inequality between the arithmetic
and geometric means

a.s. as (60)

As a result, it follows from (58) that as the number of snapshots
grows to infinity

a.s. as (61)

Inserting (59) and (61) into (57), and considering ap-
proaches zero as increases, we obtain for

a.s. as (62)

Consider now the case . Noticing that
for a small number and

, we obtain

a.s. as (63)
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Substituting (59) and (63) into (57) and recalling that as
, , we obtain for

a.s. as (64)

It follows from (64) that for

a.s. as (65)

This completes the proof.
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